Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.11.19.517190

ABSTRACT

The outbreak of Monkeypox virus infection urgently need effective vaccines. However, the vaccines so far approved are all based on whole-virus, which raises safety concerns. MRNA vaccines has demonstrated its high efficacy and safety against SARS-Cov-2 infection. Here, we developed three mRNA vaccines encoding Monkeypox proteins M1R and A35R, including A35R-M1R fusions (VGPox1 and VGPox 2) and a combination of encapsulated full-length mRNAs for A35R and M1R (VGPox 3). All three vaccines induced anti-A35R total IgGs as early as day 7 following a single vaccination. However, only VGPox 1 and 2 produced anti-M1R total IgGs at early dates following vaccination while VGPox 3 did not show significant anti-M1R antibody till day 35. Similar results were also found in neutralizing antibodies and T cell immune response. However, all mRNA vaccine groups completely protected mice from a lethal dose virus challenge and effectively cleared virus in lungs. Collectively, our results indicate that the novel mRNA vaccines coding for a fusion protein of A35R and M1R had a better anti-virus immunity than co-expression of the two individual proteins. The mRNA vaccines are highly effective and can be an alternative to the current whole-virus vaccines to defend Monkeypox virus infection.


Subject(s)
COVID-19 , Monkeypox
3.
Frontiers in pharmacology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2047061

ABSTRACT

To date, it has been confirmed that the occurrence and development of infectious diseases are tightly associated with regulatory cell death processes, such as apoptosis, autophagy, and necroptosis. Ferroptosis, as a newly discovered form of regulatory cell death characterized by iron-dependent lipid peroxidation, is not only closely associated with tumor progression, but is also found to be tightly related to the regulation of infectious diseases, such as Tuberculosis, Cryptococcal meningitis, Malaria and COVID-2019. The emerging critical roles of ferroptosis that has been found in infectious disease highlight ferroptosis as a potential therapeutic target in this field, which is therefore widely expected to be developed into new therapy strategy against infectious diseases. Here, we summarized the underlying mechanisms of ferroptosis and highlighted the intersections between host immunity and ferroptosis. Moreover, we illuminated the roles of ferroptosis in the occurrence and progression of different infectious diseases, which might provide some unique inspiration and thought-provoking perspectives for the future research of these infectious diseases, especially for the development of ferroptosis-based therapy strategy against infectious diseases.

4.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.09.06.506714

ABSTRACT

The coronavirus SARS-CoV-2 has mutated quickly and caused significant global damage. This study characterizes two mRNA vaccines ZSVG-02 (Delta) and ZSVG-02-O (Omicron BA.1), and associating heterologous prime-boost strategy following the prime of a most widely administrated inactivated whole-virus vaccine (BBIBP-CorV). The ZSVG-02-O induces neutralizing antibodies that effectively cross-react with Omicron subvariants following an order of BA.1>BA.2>BA.4/5. In native animals, ZSVG-02 or ZSVG-02-O induce humoral responses skewed to the vaccine's targeting strains, but cellular immune responses cross-react to all variants of concern (VOCs) tested. Following heterologous prime-boost regimes, animals present comparable neutralizing antibody levels and superior protection across all VOCs. Single-boost only generated ancestral and omicron dual-responsive antibodies, probably by "recall" and "reshape" the prime immunity. New Omicron-specific antibody populations, however, appeared only following the second boost with ZSVG-02-O. Overall, our results support a heterologous boost with ZSVG-02-O, providing the best protection against current VOCs in inactivated virus vaccine-primed populations.

5.
PLoS One ; 15(9): e0238760, 2020.
Article in English | MEDLINE | ID: covidwho-745057

ABSTRACT

In this study, we ascertained the chest CT data of 60 patients admitted to 3 hospitals in Chongqing with confirmed COVID-19. We conducted anatomical and pathological analyses to elucidate the possible reasons for the distribution, morphology, and characteristics of COVID-19 in chest CT. We also shared a semiquantitative scoring of affected lung segments, which was recommended by our local medical association. This scoring system was applied to quantify the severity of the disease. The most frequent imaging findings of COVID-19 were subpleural ground glass opacities and consolidation; there was a significant difference in semiquantitative scores between the early, progressive, and severe stages of the disease. We conclude that the chest CT findings of COVID-19 showed certain characteristics because of the anatomical features of the human body and pathological changes caused by the virus. Therefore, chest CT is a valuable tool for facilitating the diagnosis of COVID-19 and semiquantitative scoring of affected lung segments may further elucidate diagnosis and assessment of disease severity. This will assist healthcare workers in diagnosing COVID-19 and assessing disease severity, facilitate the selection of appropriate treatment options, which is important for reducing the spread of the virus, saving lives, and controlling the pandemic.


Subject(s)
Coronavirus Infections/diagnostic imaging , Lung/diagnostic imaging , Pneumonia, Viral/diagnostic imaging , Tomography, Spiral Computed/standards , Adolescent , Adult , Aged , COVID-19 , Child , Coronavirus Infections/pathology , Female , Humans , Lung/pathology , Male , Middle Aged , Pandemics , Pneumonia, Viral/pathology , Severity of Illness Index , Tomography, Spiral Computed/methods
SELECTION OF CITATIONS
SEARCH DETAIL